Asymptotic Notations

Kuan-Yu Chen ([t % %)

2019/03/05 @ TR-310-1, NTUST

Review

We can choose from a wide range of algorithm design
techniques

— Incremental Approach
o Insertion Sort
— Divide-and-conquer Approach

« Merge Sort

 One advantage of divide-and-conquer algorithms is that their
running times are often easily determined

Asymptotic Notations

« We introduce some terminology that will enable is to make
meaningful but inexact statements about the time and

space complexities of a program

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n’’) iff (if and
only if) there exist positive constants ¢ and n such that f(n) <cg (n) forall n,n>ny. O |

Definition: [Omega] f(n) = (g (n)) (read as *‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and »n such that f(n) 2cg (n) forall n,n=2ny. O

Definition: [Theta] f(n) = ©(g (n)) (read as ‘‘f of n is theta of g of n’’) iff there exist po-
sitive constants ¢, C,,and ng such that c,g(n) <f(n)<c,g((n)forall n,n=2ny. O

Big-Oh.

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n”’) iff (if and
only if) there exist positive constants ¢ and »n such that f(n) <cg (n) forall n,n 2 ny. O

e f(n) =0(g(n)) means that c X g(n) is an asymptotic
upper bound on the value of f(n) for all n, wheren > n,

cg(n)

f ()

n

f(n) = 0(g(n)) 4

Ny

Big-Oh..

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n”’) iff (if and
only if) there exist positive constants ¢ and n such that f(n) <cg (n) foralln,n>ny. O |

e f(n) =0(g(n)) means that c X g(n) is an asymptotic
upper bound on the value of f(n) for all n, wheren > n,

Example 1.14: 3n+2=0(n)as3n+2<4nforalln=>2. 3n+3=0(n)as3n+3<4n
forall n=>3. 100n + 6 = O(n) as 100n + 6 < 101x for n > 10. 10n? -+ 4n + 2 = O(n?) as
10n% + 4n + 2 < 11n? for n 2 5. 1000n% + 100n — 6 = O(n?) as 1000n% + 100n — 6 <
100172 for n = 100. 6%2" + n? = O2") as 6+2" + n> <7*2" forn =4. 3n+3 = O(n?) as
3n+3<3n’forn=2. 10n>+4n+2=0n*)as 10n> +4n+2<10n* forn=2. 3n+2
O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all n, n > n,. 10n? +
4n+2#0O(n). O

Big-Oh...

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n”’) iff (if and
only if) there exist positive constants ¢ and »n such that f(n) <cg (n) forall n,n 2 ny. O |

e f(n) =0(g(n)) means that c X g(n) is an asymptotic
upper bound on the value of f(n) for all n, wheren > n,

Example 1.14: 3n+2=0(n)as3n+2<4nforalln=22. 3n+3=0(n)as3n+3<4n
forall n=>3. 100n + 6 = O(n) as 100n + 6 < 101x for n > 10. 10n? -+ 4n + 2 = O(n?) as
10n% + 4n + 2 < 11n? for n 2 5. 1000n% + 100n — 6 = O(n?) as 1000n% + 100n — 6 <
100172 for n = 100. 6%2" + n? = O2") as 6+2" + n> <7*2" forn =4. 3n+3 = O(n?) as
3n+3<3n’forn=2. 10n>+4n+2=0n*)as 10n> +4n+2<10n* forn=2. 3n+2
O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all n, n > n,. 10n? +
4n+2#0(n). O

Big-Oh....

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n”’) iff (if and
only if) there exist positive constants ¢ and »n such that f(n) <cg (n) forall n,n 2 ny. O |

e f(n) =0(g(n)) means that c X g(n) is an asymptotic
upper bound on the value of f(n) for all n, wheren > n,

Example 1.14: 3n+2=0(n)as3n+2<4nforalln=22. 3n+3=0(n)as3n+3<4n
forall n=3. 100n + 6 = O(n) as 100n + 6 £ 101x for n > 10. 10n? -+ 4n + 2 = O(n?) as
10n% + 4n + 2 < 11n? for n 2 5. 1000n% + 100n — 6 = O(n?) as 1000n% + 100n — 6 <
100172 for n = 100. 6%2" + n?> = O2") as 6+2" + n> < 7*2" forn >4. 3n+3 = O(n?) as
3n+3<3n’forn=2. 10n”> +4n+2=0n*)as 10n’> +4n+2<10n* forn=2. 3n+2
O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all n, n > n,. 10n? +
4n+2 #0O(n). O

Big-Oh.....

Definition [Big ‘‘oh’’]: f(n) = O(g(n)) (read as ‘‘f of n is big oh of g of »n”’) iff (if and
only if) there exist positive constants ¢ and »n such that f(n) <cg (n) forall n,n 2 ny. O |

e f(n) =0(g(n)) means that c X g(n) is an asymptotic
upper bound on the value of f(n) for all n, wheren > n,

Example 1.14: 3n+2=0(n)as3n+2<4nforalln=22. 3n+3=0(n)as3n+3<4n
forall n=3. 100n + 6 = O(n) as 100n + 6 £ 101x for n > 10. 10n? -+ 4n + 2 = O(n?) as
10n% + 4n + 2 < 11n? for n 2 5. 1000n% + 100n — 6 = O(n?) as 1000n% + 100n — 6 <
100172 for n = 100. 6%2" + n? = O2") as 6+2" + n> <7*2" forn =4. 3n+3 = O(n?) as
3n+3<3n’forn=2. 10n>+4n+2=0n*)as 10n> +4n+2<10n* forn=2. 3n+2
O(1) as 3n + 2 is not less than or equal to ¢ for any constant ¢ and all »n, n 2 n,. 10n° +
4n+2#0(n). O

Big-Oh......

For the statement f(n) = O(g(n)) to be informative, g(n)
should be as small a function of n as one can come up with

- 3n+3=0(n)vs.3n+ 3 = 0(n?)

Fantastic names
- 0O(1) mean a computing time that is a constant
— O(n) is called linear
- 0(n?) is called quadratic
- 0(n?) is called cubic
- 0(2") is called exponential

Ordering

- 0(1) < 0(logn) < 0(n) < O(nlogn) < 0(n?) <0(n3) <
0(2™)

Big-Oh...

e 0(1) < 0(logn) < 0(n) < 0(nlogn) < 0(n?) < 0(n3) <
On®) <02") <0@B") <0(c™) <0(n) <0onM <

0(n") —

10

Omega.

Definition: [Omega] f(n) = (g (n)) (read as *‘f of n is omega of g of n’’) iff there exist

positive constants ¢ and ng such that f(n) 2cg (n) forall n,n2ny. O I

« The function g(n) is an asymptotic lower bound on f(n)

f(n)

cg(n)

n
No

f(n) =Q(gn))

11

Omega..

Definition: [Omega] f(n) = (g (n)) (read as *‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and ng such that f(n) 2cg (n) forall n,n2ny. O |

« The function g(n) is an asymptotic lower bound on f(n)

Example 1.15: 3n + 2 =Q(n) as 3n + 2 2 3n for n 2 1 (actually the inequality holds for
n 2 0, but the definition of Q requires an ny>0). 3n +3=Q((n)as3n+3=>3nforn=>1.
100n + 6 = Q(n) as 100n + 6 > 100n for n> 1. 10n2 +4n + 2 = Q(n?) as 10n? + 4n + 2 >
n? forn>1. 6%2" + n? = Q(2") as 6%2" + n? = 2" for n > 1. Observe also that 3n + 3 =
Q(1); 107 +4n + 2 = Q(n); 10n? + 4n + 2 = Q(1); 6+2" + n? = Q(n'®); 62" + n* =
Q(n°02); 6%2" + n? = Q(n?); 6¥2" + n? = Q(n); and 6¥2" + n* = Q(1). O

12

Omega...

Definition: [Omega] f(n) = (g (n)) (read as *‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and ng such that f(n) 2cg (n) forall n,n2ny. O |

« The function g(n) is an asymptotic lower bound on f(n)

Example 1.15: 3n + 2 =Q(n) as 3n + 2 2 3n for n 2 1 (actually the inequality holds for
n 2 0, but the definition of Q requires an ny>0). 3n +3=Q((n)as3n+3=>3nforn=>1.
1007 + 6 = Q(n) as 100n + 62 100n for n > 1. 10n? + 4n + 2 = Q(n?) as 10n* + 4n +2 >
n? forn>1. 62" + n? = Q(2") as 6%2" + n> >2" for n > 1. Observe also that 3n + 3 =
Q(1); 10n2 + 4n + 2 = Q(n); 10n? +4n + 2 = Q(1); 6+2" + n? = Q(n'P); 642" + n* =
Q(n0?%); 6+2" + n? = Q(n?); 6¥2" + n*> = Q(n); and 6*2" +n? = Q(1). O

13

Omega....

Definition: [Omega] f(n) = (g (n)) (read as *‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and ng such that f(n) 2cg (n) forall n,n2ny. O

« The function g(n) is an asymptotic lower bound on f(n)

Example 1.15: 3n + 2 =Q(n) as 3n + 2 2 3n for n 2 1 (actually the inequality holds for
n 2 0, but the definition of Q requires an ny>0). 3n +3=Q((n)as3n+3=>3nforn=>1.
100n + 6 = Q(n) as 100n + 6= 100n for n = 1. 10n? + 4n + 2 = Q(n?) as 10n* + 4n +2 >
n? forn>1. 6%2" + n? = Q(2") as 6%2" + n? = 2" for n > 1. Observe also that 3n + 3 =
Q(1); 10n% + 4n + 2 = Q(n); 10n? + 4n + 2 = Q(1); 652" + n? = Q(n'?); 6+2" + n? =
Q(n°02); 6%2" + n? = Q(n?); 6%2" + n? = Q(n); and 6*2" + n? = Q(1). O

o For the statement f(n) = Q(g(n)) to be informative, g(n)
should be as large a function of n as possible

- 3n+3=0QMn)vs.3n+3 =Q(1)
- 6X2"+n?2 =002 vs. 6 X 2" +n?% =0(1)

14

Theta.

Definition: [Theta] f(n) = ©(g (n)) (read as ‘‘f of n is theta of g of n’’) iff there exist po-

sitive constants ¢, ¢,, and ng such that c,g(n) <f(n) <c,g(n)forall n,n=ny. O l

« The theta is more precise than both big-oh and omega

— g(n) is both an upper and lower bound on f(n)
c2g(n)

f(n)

c18(n)

n

f(n) = ©(g(n)) .

Theta..

Definition: [Theta] f(n) = ©(g (n)) (read as ‘‘f of n is theta of g of n’’) iff there exist po-
sitive constants ¢, ¢,, and ng such that c,g(n) <f(n) <c,g(n)forall n,n=ny. O

« The theta is more precise than both big-oh and omega
- g(n) is both an upper and lower bound on f(n)

Example 1.16: 3n+2 =0(n) as 3n+ 2 > 3n for all n 22, and 3n + 2 < 4n for all n >2,
soc, =3,c,=4,and ng =2.3n +3=0(n); 10n° +4n+2=0(n"); 6x2" + n* = O");
and 10%log n + 4 = O(log n). 3n+2#0(1); 3n+ 3 #0On?); 10n? +4n + 2 # O(n); 10n?
+4n+2#0(1); 652" + n2 20O(n?); 6¥2" + n? # O '®); and 6+2" + n> 2 O(1). O

— We say that g(n) is an asymptotically tight bound for f(n)

16

Little-Oh

o(g(n)) = { f(n) : for any positive constant ¢ > 0, there exists a constant
no > 0suchthat 0 < f(n) <cg(n)foralln > ny} .

« The definitions of O-notation and o-notation are similar

Definition [Big ‘‘oh’’]: f(n) = O(g (n)) (read as *‘f of n is big oh of g of »n’’) iff (if and
only if) there exist positive constants ¢ and n such that f(n) < cg (n) forall n,n=>ny. O |

- f(n) = O(g (n)) the bound 0 < f(n) < cg(n) holds for some
constant ¢ > 0

- f(n) = o(g (n)) the bound 0 < f(n) < cg(n) holds for all

constants ¢ > 0

- Examples:
- 2n = o(n?)
- 2n? # o(n?) 17

Little-Omega

w(g(n)) = {f(n): for any positive constant ¢ > 0, there exists a constant
no > 0suchthat 0 < cg(n) < f(n)foralln > ny} .

- By analogy, w-notation is to {l-notation as o-notation is to O-

notation

Definition: [Omega] f(n) = Q(g (n)) (read as “‘f of n is omega of g of n’’) iff there exist
positive constants ¢ and #nq such that f(n) >2cg(n) forall n,n=2ny. O h

- Examples:

n2

- e
le 2
- * (JL)(TL)

18

Questions?

kychen@mail.ntust.edu.tw

19

	Asymptotic Notations
	Review
	Asymptotic Notations
	Big-Oh.
	Big-Oh..
	Big-Oh...
	Big-Oh….
	Big-Oh…..
	Big-Oh…...
	Big-Oh…
	Omega.
	Omega..
	Omega…
	Omega….
	Theta.
	Theta..
	Little-Oh
	Little-Omega
	Questions?

