

# Asymptotic Notations

Kuan-Yu Chen (陳冠宇)

2019/03/05 @ TR-310-1, NTUST

# Review

---

- We can choose from a wide range of algorithm design techniques
  - Incremental Approach
    - Insertion Sort
  - Divide-and-conquer Approach
    - Merge Sort
    - One advantage of divide-and-conquer algorithms is that their running times are often easily determined

# Asymptotic Notations

---

- We introduce some terminology that will enable us to make **meaningful but inexact** statements about the time and space complexities of a program

**Definition [Big ‘‘oh’’]:**  $f(n) = O(g(n))$  (read as ‘‘ $f$  of  $n$  is big oh of  $g$  of  $n$ ’’) iff (if and only if) there exist positive constants  $c$  and  $n_0$  such that  $f(n) \leq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

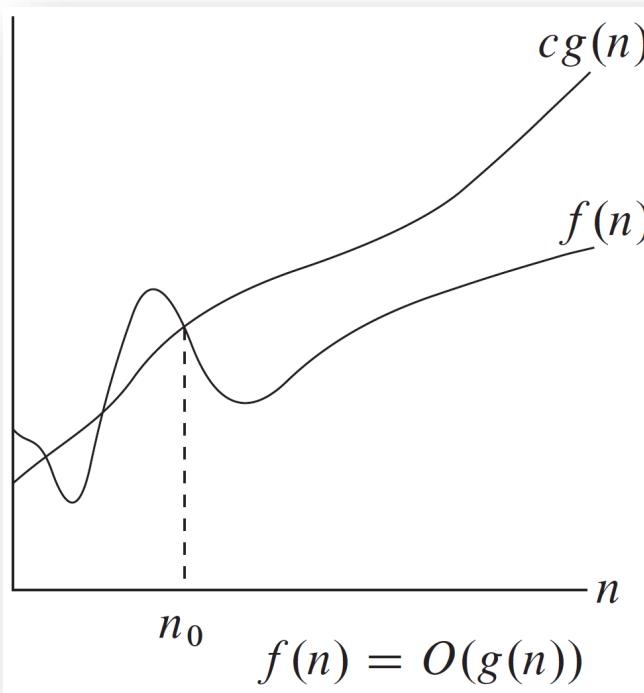
**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as ‘‘ $f$  of  $n$  is omega of  $g$  of  $n$ ’’) iff there exist positive constants  $c$  and  $n_0$  such that  $f(n) \geq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

**Definition:** [Theta]  $f(n) = \Theta(g(n))$  (read as ‘‘ $f$  of  $n$  is theta of  $g$  of  $n$ ’’) iff there exist positive constants  $c_1, c_2$ , and  $n_0$  such that  $c_1g(n) \leq f(n) \leq c_2g(n)$  for all  $n, n \geq n_0$ .  $\square$

# Big-Oh.

**Definition [Big ‘oh’]:**  $f(n) = O(g(n))$  (read as ‘‘ $f$  of  $n$  is big oh of  $g$  of  $n$ ’’) iff (if and only if) there exist positive constants  $c$  and  $n_0$  such that  $f(n) \leq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- $f(n) = O(g(n))$  means that  $c \times g(n)$  is an **asymptotic upper bound** on the value of  $f(n)$  for all  $n$ , where  $n \geq n_0$



# Big-Oh..

---

**Definition [Big ‘oh’]:**  $f(n) = O(g(n))$  (read as ‘‘ $f$  of  $n$  is big oh of  $g$  of  $n$ ’’) iff (if and only if) there exist positive constants  $c$  and  $n_0$  such that  $f(n) \leq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- $f(n) = O(g(n))$  means that  $c \times g(n)$  is an **asymptotic upper bound** on the value of  $f(n)$  for all  $n$ , where  $n \geq n_0$

**Example 1.14:**  $3n + 2 = O(n)$  as  $3n + 2 \leq 4n$  for all  $n \geq 2$ .  $3n + 3 = O(n)$  as  $3n + 3 \leq 4n$  for all  $n \geq 3$ .  $100n + 6 = O(n)$  as  $100n + 6 \leq 101n$  for  $n \geq 10$ .  $10n^2 + 4n + 2 = O(n^2)$  as  $10n^2 + 4n + 2 \leq 11n^2$  for  $n \geq 5$ .  $1000n^2 + 100n - 6 = O(n^2)$  as  $1000n^2 + 100n - 6 \leq 1001n^2$  for  $n \geq 100$ .  $6*2^n + n^2 = O(2^n)$  as  $6*2^n + n^2 \leq 7*2^n$  for  $n \geq 4$ .  $3n + 3 = O(n^2)$  as  $3n + 3 \leq 3n^2$  for  $n \geq 2$ .  $10n^2 + 4n + 2 = O(n^4)$  as  $10n^2 + 4n + 2 \leq 10n^4$  for  $n \geq 2$ .  $3n + 2 \neq O(1)$  as  $3n + 2$  is not less than or equal to  $c$  for any constant  $c$  and all  $n, n \geq n_0$ .  $10n^2 + 4n + 2 \neq O(n)$ .  $\square$

# Big-Oh...

---

**Definition [Big ‘oh’]:**  $f(n) = O(g(n))$  (read as ‘‘ $f$  of  $n$  is big oh of  $g$  of  $n$ ’’) iff (if and only if) there exist positive constants  $c$  and  $n_0$  such that  $f(n) \leq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- $f(n) = O(g(n))$  means that  $c \times g(n)$  is an **asymptotic upper bound** on the value of  $f(n)$  for all  $n$ , where  $n \geq n_0$

**Example 1.14:**  $3n + 2 = O(n)$  as  $3n + 2 \leq 4n$  for all  $n \geq 2$ .  $3n + 3 = O(n)$  as  $3n + 3 \leq 4n$  for all  $n \geq 3$ .  $100n + 6 = O(n)$  as  $100n + 6 \leq 101n$  for  $n \geq 10$ .  $10n^2 + 4n + 2 = O(n^2)$  as  $10n^2 + 4n + 2 \leq 11n^2$  for  $n \geq 5$ .  $1000n^2 + 100n - 6 = O(n^2)$  as  $1000n^2 + 100n - 6 \leq 1001n^2$  for  $n \geq 100$ .  $6*2^n + n^2 = O(2^n)$  as  $6*2^n + n^2 \leq 7*2^n$  for  $n \geq 4$ .  $3n + 3 = O(n^2)$  as  $3n + 3 \leq 3n^2$  for  $n \geq 2$ .  $10n^2 + 4n + 2 = O(n^4)$  as  $10n^2 + 4n + 2 \leq 10n^4$  for  $n \geq 2$ .  $3n + 2 \neq O(1)$  as  $3n + 2$  is not less than or equal to  $c$  for any constant  $c$  and all  $n, n \geq n_0$ .  $10n^2 + 4n + 2 \neq O(n)$ .  $\square$

# Big-Oh....

---

**Definition [Big ‘oh’]:**  $f(n) = O(g(n))$  (read as ‘‘ $f$  of  $n$  is big oh of  $g$  of  $n$ ’’) iff (if and only if) there exist positive constants  $c$  and  $n_0$  such that  $f(n) \leq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- $f(n) = O(g(n))$  means that  $c \times g(n)$  is an **asymptotic upper bound** on the value of  $f(n)$  for all  $n$ , where  $n \geq n_0$

**Example 1.14:**  $3n + 2 = O(n)$  as  $3n + 2 \leq 4n$  for all  $n \geq 2$ .  $3n + 3 = O(n)$  as  $3n + 3 \leq 4n$  for all  $n \geq 3$ .  $100n + 6 = O(n)$  as  $100n + 6 \leq 101n$  for  $n \geq 10$ .  $10n^2 + 4n + 2 = O(n^2)$  as  $10n^2 + 4n + 2 \leq 11n^2$  for  $n \geq 5$ .  $1000n^2 + 100n - 6 = O(n^2)$  as  $1000n^2 + 100n - 6 \leq 1001n^2$  for  $n \geq 100$ .  $6*2^n + n^2 = O(2^n)$  as  $6*2^n + n^2 \leq 7*2^n$  for  $n \geq 4$ .  $3n + 3 = O(n^2)$  as  $3n + 3 \leq 3n^2$  for  $n \geq 2$ .  $10n^2 + 4n + 2 = O(n^4)$  as  $10n^2 + 4n + 2 \leq 10n^4$  for  $n \geq 2$ .  $3n + 2 \neq O(1)$  as  $3n + 2$  is not less than or equal to  $c$  for any constant  $c$  and all  $n, n \geq n_0$ .  $10n^2 + 4n + 2 \neq O(n)$ .  $\square$

# Big-Oh.....

---

**Definition [Big ‘oh’]:**  $f(n) = O(g(n))$  (read as ‘‘ $f$  of  $n$  is big oh of  $g$  of  $n$ ’’) iff (if and only if) there exist positive constants  $c$  and  $n_0$  such that  $f(n) \leq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- $f(n) = O(g(n))$  means that  $c \times g(n)$  is an **asymptotic upper bound** on the value of  $f(n)$  for all  $n$ , where  $n \geq n_0$

**Example 1.14:**  $3n + 2 = O(n)$  as  $3n + 2 \leq 4n$  for all  $n \geq 2$ .  $3n + 3 = O(n)$  as  $3n + 3 \leq 4n$  for all  $n \geq 3$ .  $100n + 6 = O(n)$  as  $100n + 6 \leq 101n$  for  $n \geq 10$ .  $10n^2 + 4n + 2 = O(n^2)$  as  $10n^2 + 4n + 2 \leq 11n^2$  for  $n \geq 5$ .  $1000n^2 + 100n - 6 = O(n^2)$  as  $1000n^2 + 100n - 6 \leq 1001n^2$  for  $n \geq 100$ .  $6*2^n + n^2 = O(2^n)$  as  $6*2^n + n^2 \leq 7*2^n$  for  $n \geq 4$ .  $3n + 3 = O(n^2)$  as  $3n + 3 \leq 3n^2$  for  $n \geq 2$ .  $10n^2 + 4n + 2 = O(n^4)$  as  $10n^2 + 4n + 2 \leq 10n^4$  for  $n \geq 2$ .  $3n + 2 \neq O(1)$  as  $3n + 2$  is not less than or equal to  $c$  for any constant  $c$  and all  $n, n \geq n_0$ .  $10n^2 + 4n + 2 \neq O(n)$ .  $\square$

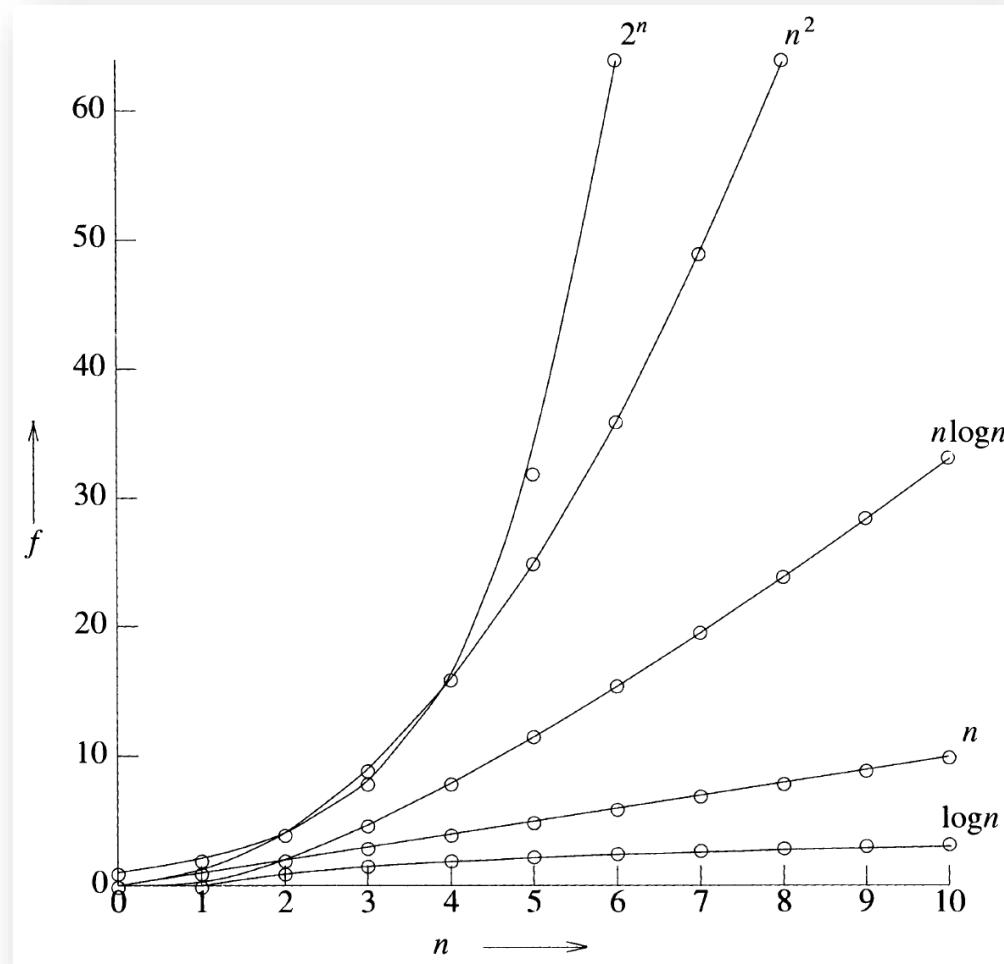
# Big-Oh.....

---

- For the statement  $f(n) = O(g(n))$  to be **informative**,  $g(n)$  should be as small a function of  $n$  as one can come up with
  - $3n + 3 = O(n)$  vs.  $3n + 3 = O(n^2)$
- Fantastic names
  - $O(1)$  mean a computing time that is a constant
  - $O(n)$  is called linear
  - $O(n^2)$  is called quadratic
  - $O(n^3)$  is called cubic
  - $O(2^n)$  is called exponential
- Ordering
  - $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$

# Big-Oh...

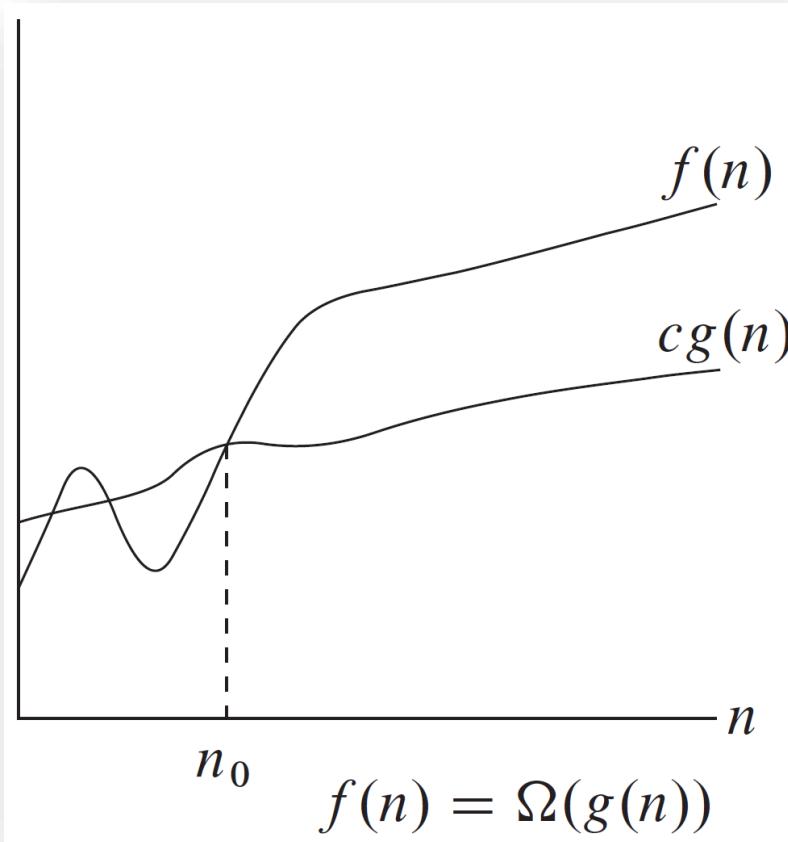
- $0(1) < 0(\log n) < 0(n) < 0(n \log n) < 0(n^2) < 0(n^3) < 0(n^c) < 0(2^n) < 0(3^n) < 0(c^n) < 0(n!) < 0(n^n) < 0(n^{c^n})$



# Omega.

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as “ $f$  of  $n$  is omega of  $g$  of  $n$ ”) iff there exist positive constants  $c$  and  $n_0$  such that  $f(n) \geq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- The function  $g(n)$  is an **asymptotic lower bound** on  $f(n)$



# Omega..

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as “ $f$  of  $n$  is omega of  $g$  of  $n$ ”) iff there exist positive constants  $c$  and  $n_0$  such that  $f(n) \geq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- The function  $g(n)$  is an **asymptotic lower bound** on  $f(n)$

**Example 1.15:**  $3n + 2 = \Omega(n)$  as  $3n + 2 \geq 3n$  for  $n \geq 1$  (actually the inequality holds for  $n \geq 0$ , but the definition of  $\Omega$  requires an  $n_0 > 0$ ).  $3n + 3 = \Omega(n)$  as  $3n + 3 \geq 3n$  for  $n \geq 1$ .  $100n + 6 = \Omega(n)$  as  $100n + 6 \geq 100n$  for  $n \geq 1$ .  $10n^2 + 4n + 2 = \Omega(n^2)$  as  $10n^2 + 4n + 2 \geq n^2$  for  $n \geq 1$ .  $6*2^n + n^2 = \Omega(2^n)$  as  $6*2^n + n^2 \geq 2^n$  for  $n \geq 1$ . Observe also that  $3n + 3 = \Omega(1)$ ;  $10n^2 + 4n + 2 = \Omega(n)$ ;  $10n^2 + 4n + 2 = \Omega(1)$ ;  $6*2^n + n^2 = \Omega(n^{100})$ ;  $6*2^n + n^2 = \Omega(n^{50.2})$ ;  $6*2^n + n^2 = \Omega(n^2)$ ;  $6*2^n + n^2 = \Omega(n)$ ; and  $6*2^n + n^2 = \Omega(1)$ .  $\square$

# Omega...

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as “ $f$  of  $n$  is omega of  $g$  of  $n$ ”) iff there exist positive constants  $c$  and  $n_0$  such that  $f(n) \geq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- The function  $g(n)$  is an **asymptotic lower bound** on  $f(n)$

**Example 1.15:**  $3n + 2 = \Omega(n)$  as  $3n + 2 \geq 3n$  for  $n \geq 1$  (actually the inequality holds for  $n \geq 0$ , but the definition of  $\Omega$  requires an  $n_0 > 0$ ).  $3n + 3 = \Omega(n)$  as  $3n + 3 \geq 3n$  for  $n \geq 1$ .  $100n + 6 = \Omega(n)$  as  $100n + 6 \geq 100n$  for  $n \geq 1$ .  $10n^2 + 4n + 2 = \Omega(n^2)$  as  $10n^2 + 4n + 2 \geq n^2$  for  $n \geq 1$ .  $6*2^n + n^2 = \Omega(2^n)$  as  $6*2^n + n^2 \geq 2^n$  for  $n \geq 1$ . Observe also that  $3n + 3 = \Omega(1)$ ;  $10n^2 + 4n + 2 = \Omega(n)$ ;  $10n^2 + 4n + 2 = \Omega(1)$ ;  $6*2^n + n^2 = \Omega(n^{100})$ ;  $6*2^n + n^2 = \Omega(n^{50.2})$ ;  $6*2^n + n^2 = \Omega(n^2)$ ;  $6*2^n + n^2 = \Omega(n)$ ; and  $6*2^n + n^2 = \Omega(1)$ .  $\square$

# Omega....

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as “ $f$  of  $n$  is omega of  $g$  of  $n$ ”) iff there exist positive constants  $c$  and  $n_0$  such that  $f(n) \geq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- The function  $g(n)$  is an **asymptotic lower bound** on  $f(n)$

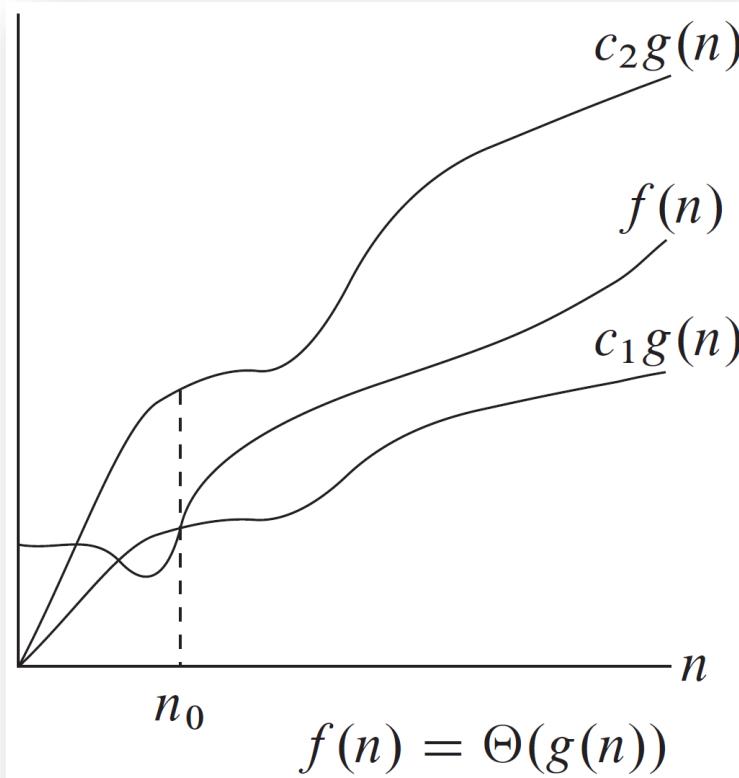
**Example 1.15:**  $3n + 2 = \Omega(n)$  as  $3n + 2 \geq 3n$  for  $n \geq 1$  (actually the inequality holds for  $n \geq 0$ , but the definition of  $\Omega$  requires an  $n_0 > 0$ ).  $3n + 3 = \Omega(n)$  as  $3n + 3 \geq 3n$  for  $n \geq 1$ .  $100n + 6 = \Omega(n)$  as  $100n + 6 \geq 100n$  for  $n \geq 1$ .  $10n^2 + 4n + 2 = \Omega(n^2)$  as  $10n^2 + 4n + 2 \geq n^2$  for  $n \geq 1$ .  $6*2^n + n^2 = \Omega(2^n)$  as  $6*2^n + n^2 \geq 2^n$  for  $n \geq 1$ . Observe also that  $3n + 3 = \Omega(1)$ ;  $10n^2 + 4n + 2 = \Omega(n)$ ;  $10n^2 + 4n + 2 = \Omega(1)$ ;  $6*2^n + n^2 = \Omega(n^{100})$ ;  $6*2^n + n^2 = \Omega(n^{50.2})$ ;  $6*2^n + n^2 = \Omega(n^2)$ ;  $6*2^n + n^2 = \Omega(n)$ ; and  $6*2^n + n^2 = \Omega(1)$ .  $\square$

- For the statement  $f(n) = \Omega(g(n))$  to be informative,  $g(n)$  should be as large a function of  $n$  as possible
  - $3n + 3 = \Omega(n)$  vs.  $3n + 3 = \Omega(1)$
  - $6 \times 2^n + n^2 = \Omega(2^n)$  vs.  $6 \times 2^n + n^2 = \Omega(1)$

# Theta.

**Definition:** [Theta]  $f(n) = \Theta(g(n))$  (read as “ $f$  of  $n$  is theta of  $g$  of  $n$ ”) iff there exist positive constants  $c_1, c_2$ , and  $n_0$  such that  $c_1g(n) \leq f(n) \leq c_2g(n)$  for all  $n, n \geq n_0$ .  $\square$

- The theta is more precise than both big-oh and omega
  - $g(n)$  is both an upper and lower bound on  $f(n)$



# Theta..

**Definition:** [Theta]  $f(n) = \Theta(g(n))$  (read as “ $f$  of  $n$  is theta of  $g$  of  $n$ ”) iff there exist positive constants  $c_1, c_2$ , and  $n_0$  such that  $c_1 g(n) \leq f(n) \leq c_2 g(n)$  for all  $n, n \geq n_0$ .  $\square$

- The theta is more precise than both big-oh and omega
  - $g(n)$  is both an upper and lower bound on  $f(n)$

**Example 1.16:**  $3n + 2 = \Theta(n)$  as  $3n + 2 \geq 3n$  for all  $n \geq 2$ , and  $3n + 2 \leq 4n$  for all  $n \geq 2$ , so  $c_1 = 3, c_2 = 4$ , and  $n_0 = 2$ .  $3n + 3 = \Theta(n)$ ;  $10n^2 + 4n + 2 = \Theta(n^2)$ ;  $6*2^n + n^2 = \Theta(2^n)$ ; and  $10*\log n + 4 = \Theta(\log n)$ .  $3n + 2 \neq \Theta(1)$ ;  $3n + 3 \neq \Theta(n^2)$ ;  $10n^2 + 4n + 2 \neq \Theta(n)$ ;  $10n^2 + 4n + 2 \neq \Theta(1)$ ;  $6*2^n + n^2 \neq \Theta(n^2)$ ;  $6*2^n + n^2 \neq \Theta(n^{100})$ ; and  $6*2^n + n^2 \neq \Theta(1)$ .  $\square$

- We say that  $g(n)$  is an *asymptotically tight bound* for  $f(n)$

# Little-Oh

$o(g(n)) = \{f(n) : \text{for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0\}$ .

- The definitions of  $O$ -notation and  $o$ -notation are similar

**Definition [Big “oh”]:**  $f(n) = O(g(n))$  (read as “ $f$  of  $n$  is big oh of  $g$  of  $n$ ”) iff (if and only if) there exist positive constants  $c$  and  $n_0$  such that  $f(n) \leq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- $f(n) = O(g(n))$ , the bound  $0 \leq f(n) \leq cg(n)$  holds for *some* constant  $c > 0$
- $f(n) = o(g(n))$ , the bound  $0 \leq f(n) < cg(n)$  holds for *all* constants  $c > 0$
- Examples:
  - $2n = o(n^2)$
  - $2n^2 \neq o(n^2)$

# Little-Omega

---

$\omega(g(n)) = \{f(n) : \text{for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0\}.$

- By analogy,  $\omega$ -notation is to  $\Omega$ -notation as  $o$ -notation is to  $O$ -notation

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as “ $f$  of  $n$  is omega of  $g$  of  $n$ ”) iff there exist positive constants  $c$  and  $n_0$  such that  $f(n) \geq cg(n)$  for all  $n, n \geq n_0$ .  $\square$

- Examples:

- $\frac{n^2}{2} = \omega(n)$

- $\frac{n^2}{2} \neq \omega(n^2)$

# Questions?

---



[kychen@mail.ntust.edu.tw](mailto:kychen@mail.ntust.edu.tw)